SKEW PRODUCTS OVER TRANSLATIONS
ON T¢, d > 2.
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ABSTRACT. We give an example on T* of a minimal translation
R, and a real analytic function ¢, such that the circle-valued skew
product extension of R, by ¢ has a Lebesgue spectrum in the
orthocomplement of the space of eigenfunctions.

1. INTRODUCTION.

Let T = R?/Z4, d > 1 and denote by u the Haar measure on T?.
Given a minimal translation R, on T? and a real function ¢ on R?,
smooth and Z?-periodic, we will consider the map (skew product) S, ,:
T'xT' — T x T*

(z,8) — (z4+a,s+ ¢(z) mod 1)

When d = 1, it was proved in [1] that if ¢ is absolutely continuous, the
spectrum of the skew product is singular with respect to the Lebesgue
measure’. The proof in [1] is based on an improved Denjoy-Koksma
inequality implying that Si", tends uniformly to the identity map on
T? as g, runs through the sequence of denominators of the convergents
of a. Hence, S, is said to be rigid and one easily deduces that its
spectrum is purely singular. Here, we want to prove that this is not
anymore true when d > 2; namely, we give an example of a skew prod-
uct over T? with a real analytic-function that is nonrigid (it actually
displays "mixing in the fibers") and we derive from it an example of
a skew product over T* that has countable Lebesgue spectrum in the
orthocomplement of the space of eigenfunctions. Our argument is es-
sentially based on the construction by J-C. Yoccoz [4] of a minimal
translation on T? and a real-analytic complex function ¢ of T? that
give a counterexample, in dimension 2, to the Denjoy-Koksma inequal-
ity valid for functions over the circle.

'In this paper, the authors, P. Gabriel, M. Lemanczyk and P. Liardet, consider
skew products over irrational rotations with circle-valued functions. They prove
that when ¢ is absolutely continuous with degree 0, the corresponding skew product
is rigid. In contrast, if the degree of ¢ is not zero, and ¢’ is of bounded variation,
the skew product has countable Lebesgue spectrum in the orthocomplement of the
eigenfunctions of R, (see [3]), the most known example being (z,y) — (z+a, 2+y).
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2. MIXING IN THE FIBERS.

Take o and o rationaly independent such that the denominators of
their convergents, ¢, and ¢/, satisfy the following, for n > ng

(1) n
(2) a0,

and let S, « , be the skew product constructed from R, . and the real
analytic function

& ei27rqja: o ei27rq;y
(3)  ¢(zr,y)=1+Re Z 7 + Re Z :

/
q,
7=0 7=0 e

3ng,,_
e nl,

eann7

(AVARYS

For | € Z and k € Z?, we denote by ¢, € L*(T?, C) the character
gi?m<kz>gi2mls where < .,. > is the scalar product on R%. In this note
we will prove the following estimate

Proposition 1 (Mixing in the fibers). Assume | # 0. Then given any
€ > 0, we have

(T/)k,JOSZZar,@/i/)k,l) = /3¢k,10523a/,@(95,y:S)Qﬁk,l(x,yas)dxdde
T

— O(—)

m3

when m goes to infinity.

This mixing in the fibers already eliminates the rigidity encountered
when d = 1. Before we prove the proposition we show how the esti-
mation of the rate of "mixing" enclosed in it, enables us to construct
a skew product with a Lebesgue component in its spectrum:

Assume R; = Ry, o a0, iS a minimal translation on T* and the
couples (a;,al), i = 1,2 both satisfy (1) and (2). We will denote by
(71, 2], 2, 74) the coordinates on T*. Let o (x1,2}) and @a(z9, 7)) be
as in (3), and define on T* the real analytic function ¢ = ¢; + @s.
Define now on T? the skew product S = S;,. Let H = L*(T%, C)
be the set of complex functions on T® that are L? with respect to the
Haar measure. By Ug we refer to the unitary operator on H associated

~

to S:

H — H

f — foS.
(rl;he operator Uy is unitary because S preserves the Haar measure on
%‘hg space H decomposes under the action of Ug into a countable sum
of orthogonal invariant subspaces H;, | € Z, where H; designates the

subspace containing the functions of the form a(zy, 2, z9, 25)e™™s.
Finally, from Proposition 1, it follows that
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Theorem 1. For any [ € Z*, Ug has a Lebesgue spectrum on H,.

Proof. For (ky, ki, ko, ky) € Z*, let &, 1 5, 4y, be the character

. ) I, . .
g2 (kizitky i +haratkoro+s)  We have immediately

|Cm| = ‘ (Ugngkl,k’l,k2,kg,z/§k1,kg,k2,kg,l) |

= ‘(l/)kl,kg,lOSz,a/l,m/¢k1,k1,z> (¢k2,k§,1053;,a/2,m/¢k2,k§,l>’

1
- G
when [ # 0 and m goes to infinity. The latter is satisfied for any
€ > 0, hence the serie > |c,,|? converges and the spectral measure of
Eky k) ko k1 18 absolutely continuous with respect to Lebesgue (by def-
inition, the numbers ¢, are the Fourier coefficients of this measure).
Furthermore, by the so-called “purity law” on the unitary operators
arising from cocycles, we conclude that Ug has a Lebesgue spectrum
on H;, when [ # 0 (the purity law, see 2], states that the spectral
type of Ug on H; is pure, i.e. either discrete, or continuous and purely
singular, or equivalent to Lebesgue). O

Proof of Proposition 1. Assume «, o’ and ¢ satisfy (1), (2) and (3).
From now on, we will denote the Birkhoff sums of ¢ with respect to
Ra,a/ by

—1

(pm(x: y) = 2 (Rlocz,a’<x7 y)) .

0

3

B
Il

We have
(4) ’(%,1052?(1/#/%,1)‘ = /2 eiQ’Tl“’m("’:’y)dazdy‘ ,
T

and we will derive the estimation of Proposition 1 from the large oscil-
lations of ¢,,(x,y) for all integer m, large enough. We underlined the
last quantifier because there lies the difference with the one-dimensional
case, the oscillations of ¢,, being large in one or in the other direction
x and y depending on whether m is far from g, or far from ¢/,. Indeed,
a direct computation on the Birkhoff sums of ¢, implies the following,
where | . || ;s denotes a norm on the space of real functions on R? of
class C® and Z?-periodic

Lemma For any m € [e"™, e"%], we have
m
me(x: y) = E COS(QTFan) + h(m) (1’) + ¢m (y),

where ¢m(y) denotes the Birkhoff sums of the “y-part” of ¢, and where
h™) satisfies, for any m in the above interval, || h'™ || s = O(g,).

. . . /
There is of course an equivalent expression when m € [e™, e(”+1)q"+1]
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in which we interchange x and ¢, with y and ¢/, respectively.

Proof of the lemma. For any m € N, we have

X /
om(z,y) = Re (Z (m qr) el Z Y (m,q,) Zgquy> ’

k=1 eqk
where
N N / /
1 — ez27rmqka 1— ez%rmqka
- - - L - -
X(m’ qk) - 1 — ei2mare ) Y(m’ qk) 1 — ei2ﬂ'qfca’ :

We will need the following simple inequalities

(5) Forall ke N*, andany m e N, | X(m,q)| < m;
(6) for k <n, and any m € N, | X(m,qe)] < qn;
(7)  for m < ", | X (m,q,) —m| = o(l).

Proof of (5), (6) and (7): First,

m qk E eszqua

so the first inequality is trivial.
For the other inequalities remember that the denominators of the con-
vergents of a satisfy

(8) | gn—ra [ < [|[kall], VK < g,
and
1 1
9 5 S ——— < Gn—10||| < —,
©) 30 S e < Mla-alll <
where |||.||| denotes the distance to the closest integer.

Next, notice that for any k£ and for any m

| X (m, qi)| <

then using the inequality sin(7u) > 2u, when 0 < u < %, we have
2 1 1
1 —e2rae|  sinlllgalll = 2[llgall]

so, if k < n, we have from (8) and the left hand side in (9), that this
last term is bounded by ¢,. Hence, (6) is proved.
For (7), we use again

m qn E 6127r]qna
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1 1 < oMn
T S o One has for j <e

o ,
ez27r]qna =1 + 0(672nqn),

since |[|gnall| <

which immediately leads to (7).
Coming back to the proof of the lemma, we want to find a bound,
when m < "% to the C? norm of

hm) (ﬁ) — Re (Z Mequkaﬂ) . % COS(27an£U).

Py edk edn

If we consider the second derivatives of the sum above we have, from

(5)
<m i LW%)Q,

ek

- X m, 127qR T
e ( Z (eqqu)<27TQk)2€2 " )

k=n+1

k=n+1
which implies, since m < ", and ¢, > €™ for k > n + 1,
(10) = o(1).
From (6), it follows that
n—1
X )
Re ( M(gﬁqk)%z?mw) ‘ = O(qy).

edk
k=1

(11)

Finally, (7) implies that

and we obtain the required bound on the second derivative of A",
which is clearly also valid for h(™ and its first derivative. O

X Gn) =11 2] = (1),

GQH

Assume now m € [e", "], In light of the lemma we have just
stated, our problem is reduced to majorizing, for [ € Z*, the absolute
value of the integral

In(l) = / ¢i2nl[ e cos(rana)+Hh W @)] g
T

with the hypothesis || (™ || ;s < g,
Whenever n > %, one has for m € [e"dn, et

(12) Ay = m >m!73.
e%’b

With a slight abuse of notation we will write ¢,,(x) for the function
Uy cOS(2mqnx) + R ().
First, we break down the integral to avoid the zeros of sin(27g,z):
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2gn—1 E+1

S
k=0

2qn

2qn—1 m 2qn—1 Vi 2qn—1 k+1
. . 2gn .
E :/ ez27rl<pm(x)dx+ § :/ ezlegom(m)dx+ 2 / ezle@m(I)dl,,
k
k=0 Y 2gn k=0 YUk k=0 YUk
where

Bl (1 3 E+1 1 /1\*®
Up=—+—| — Vp = — — .
YT, Ag\m) 0 N 2q, 4gu \m

We have then

2qn—1
(13) TnO <m=5+ 3 |10
k=0
where
Vk .
I8 () = / e2mem@ e k=0,..,2¢, — 1
U
Denote o
m htm
D) = () = cos(2mq,x) + (@)
am am
(The function §,, is not a Birkhoff sum.)
Notice that, for = € [uy, vg], 2mq,x € [km + gm_%, (k+1)m — Zm™s],

which implies
(14) | sin(2mq,x)| > m 3.

Since || A" || s < g, < logm, we have for any m € [e", e"]:
on one hand,

(15) | Bon() |2 < 47262 + gn < (logm)?,

and on the other hand, using (12) and (14) we have that @, (z) is of
constant sign when = € [uy, vg], and

logm

1
m 3.

(16) ) (2)] > 2mgum 5 —

m

Hence, we can make in the expression of I¥ (I) the change of variable

s =®,,(z), and obtain
D (V1) i27lam s
B (Uk) gpm((pm (S))
If now we integrate by parts, having (16) in mind we obtain

Prm(v) [ 1 i2ml
/ m3 (@;n (8)) eL wamsds

1)) =

1
m3 1

(17) |1, <

Fm(ur) [Pl

mla,, + 2rla,,
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Going back to the initial variable we have

B (Vi) " ] Vg =l ) _
/ Pm ; (@;nl(s)) eszlamst / Pm gx) ezQﬂ'lamgam (I)dCU
— ) 1< —/
) [P we [P] (7)

< somilw, |
—m 5
= g, 1 Pmlle
1 2 2
< —m3[logm|”.

Hence, (17) becomes

1

3 1

o< 2t m’[logm]®.

wla,, 4nlanq,

In the right hand side of this inequality, the second term is clearly
dominant and (12) implies

1 ¢ 1
115 (1) < —m 3t2[logm]? < —m 3t
q'n QTL
for any m € [e", "], n large enough. Coming back to (13), we
obtain

1L(D)] < m 3 +2m 3+ < 3m 3+,

When m € [¢"%, e(»TDin+1] we proceed in the same way integrating
along y in (4). Proposition 1 is hence proved. O
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