SKEW PRODUCTS OVER TRANSLATIONS ON $\mathbf{T}^d,\ d\geq 2.$

BASSAM R. FAYAD

ABSTRACT. We give an example on \mathbf{T}^4 of a minimal translation R_{α} and a real analytic function φ , such that the circle-valued skew product extension of R_{α} by φ has a Lebesgue spectrum in the orthocomplement of the space of eigenfunctions.

1. Introduction.

Let $\mathbf{T}^d = \mathbf{R}^d/\mathbf{Z}^d$, $d \geq 1$ and denote by μ the Haar measure on \mathbf{T}^d . Given a minimal translation R_{α} on \mathbf{T}^d and a real function φ on \mathbf{R}^d , smooth and \mathbf{Z}^d -periodic, we will consider the map (skew product) $S_{\alpha,\varphi}$:

$$\mathbf{T}^d \times \mathbf{T}^1 \longrightarrow \mathbf{T}^d \times \mathbf{T}^1$$

 $(z, s) \longrightarrow (z + \alpha, s + \varphi(z) \mod 1)$

When d=1, it was proved in [1] that if φ is absolutely continuous, the spectrum of the skew product is singular with respect to the Lebesgue measure¹. The proof in [1] is based on an improved Denjoy-Koksma inequality implying that $S^{q_n}_{\alpha,\varphi}$ tends uniformly to the identity map on \mathbf{T}^2 as q_n runs through the sequence of denominators of the convergents of α . Hence, $S_{\alpha,\varphi}$ is said to be rigid and one easily deduces that its spectrum is purely singular. Here, we want to prove that this is not anymore true when $d \geq 2$; namely, we give an example of a skew product over T^2 with a real analytic-function that is nonrigid (it actually displays "mixing in the fibers") and we derive from it an example of a skew product over \mathbf{T}^4 that has countable Lebesgue spectrum in the orthocomplement of the space of eigenfunctions. Our argument is essentially based on the construction by J-C. Yoccoz [4] of a minimal translation on \mathbf{T}^2 and a real-analytic complex function φ of \mathbf{T}^2 that give a counterexample, in dimension 2, to the Denjoy-Koksma inequality valid for functions over the circle.

¹In this paper, the authors, P. Gabriel, M. Lemanczyk and P. Liardet, consider skew products over irrational rotations with *circle-valued* functions. They prove that when φ is absolutely continuous with degree 0, the corresponding skew product is rigid. In contrast, if the degree of φ is not zero, and φ' is of bounded variation, the skew product has countable Lebesgue spectrum in the orthocomplement of the eigenfunctions of R_{α} (see [3]), the most known example being $(x, y) \to (x + \alpha, x + y)$.

2. MIXING IN THE FIBERS.

Take α and α' rationaly independent such that the denominators of their convergents, q_n and q'_n , satisfy the following, for $n \geq n_0$

(1)
$$q_n \geq e^{3nq'_{n-1}},$$

(2) $q'_n \geq e^{3nq_n},$

$$(2) q_n' \geq e^{3nq_n},$$

and let $S_{\alpha,\alpha',\varphi}$ be the skew product constructed from $R_{\alpha,\alpha'}$ and the real analytic function

(3)
$$\varphi(x,y) = 1 + \operatorname{Re}\left(\sum_{j=0}^{\infty} \frac{e^{i2\pi q_j x}}{e^{q_j}}\right) + \operatorname{Re}\left(\sum_{j=0}^{\infty} \frac{e^{i2\pi q'_j y}}{e^{q'_j}}\right).$$

For $l \in \mathbf{Z}$ and $k \in \mathbf{Z}^2$, we denote by $\psi_{k,l} \in L^2(\mathbf{T}^3, \mathbf{C})$ the character $e^{i2\pi < k,z>}e^{i2\pi ls}$, where <.,.> is the scalar product on \mathbf{R}^2 . In this note we will prove the following estimate

Proposition 1 (Mixing in the fibers). Assume $l \neq 0$. Then given any $\epsilon > 0$, we have

when m goes to infinity.

This mixing in the fibers already eliminates the rigidity encountered when d=1. Before we prove the proposition we show how the estimation of the rate of "mixing" enclosed in it, enables us to construct a skew product with a Lebesgue component in its spectrum:

Assume $R_{\hat{\alpha}} = R_{\alpha_1,\alpha'_1,\alpha_2,\alpha'_2}$ is a minimal translation on \mathbf{T}^4 and the couples (α_i, α'_i) , i = 1, 2 both satisfy (1) and (2). We will denote by (x_1, x_1', x_2, x_2') the coordinates on \mathbf{T}^4 . Let $\varphi_1(x_1, x_1')$ and $\varphi_2(x_2, x_2')$ be as in (3), and define on \mathbf{T}^4 the real analytic function $\hat{\varphi} = \varphi_1 + \varphi_2$. Define now on \mathbf{T}^5 the skew product $\hat{S} = S_{\hat{\alpha},\hat{\varphi}}$. Let $H = L^2(\mathbf{T}^5, \mathbf{C})$

be the set of complex functions on T^5 that are L^2 with respect to the Haar measure. By $U_{\hat{S}}$ we refer to the unitary operator on H associated to S:

$$\begin{array}{ccc} H & \longrightarrow & H, \\ f & \longrightarrow & f o \hat{S}. \end{array}$$

(The operator $U_{\hat{S}}$ is unitary because \hat{S} preserves the Haar measure on

The space H decomposes under the action of $U_{\hat{S}}$ into a countable sum of orthogonal invariant subspaces H_l , $l \in \mathbf{Z}$, where H_l designates the subspace containing the functions of the form $a(x_1, x_1', x_2, x_2')e^{i2\pi ls}$. Finally, from Proposition 1, it follows that

Theorem 1. For any $l \in \mathbf{Z}^*$, $U_{\hat{S}}$ has a Lebesgue spectrum on H_l .

Proof. For $(k_1, k'_1, k_2, k'_2) \in \mathbf{Z}^4$, let $\xi_{k_1, k'_1, k_2, k'_2, l}$ be the character $e^{i2\pi(k_1x_1+k'_1x'_1+k_2x_2+k'_2x'_2+ls)}$. We have immediately

$$|c_{m}| := \left| \left(U_{\hat{S}}^{m} \xi_{k_{1},k'_{1},k_{2},k'_{2},l}/\xi_{k_{1},k'_{1},k_{2},k'_{2},l} \right) \right|$$

$$= \left| \left(\psi_{k_{1},k'_{1},l} o S_{\alpha_{1},\alpha'_{1},\varphi_{1}}^{m}/\psi_{k_{1},k'_{1},l} \right) \left(\psi_{k_{2},k'_{2},l} o S_{\alpha_{2},\alpha'_{2},\varphi_{2}}^{m}/\psi_{k_{2},k'_{2},l} \right) \right|$$

$$= O\left(\frac{1}{m^{\frac{2}{3} - 2\epsilon}} \right)$$

when $l \neq 0$ and m goes to infinity. The latter is satisfied for any $\epsilon > 0$, hence the serie $\sum |c_m|^2$ converges and the spectral measure of $\xi_{k_1,k'_1,k_2,k'_2,l}$ is absolutely continuous with respect to Lebesgue (by definition, the numbers c_m are the Fourier coefficients of this measure). Furthermore, by the so-called "purity law" on the unitary operators arising from cocycles, we conclude that $U_{\hat{S}}$ has a Lebesgue spectrum on H_l , when $l \neq 0$ (the purity law, see [2], states that the spectral type of $U_{\hat{S}}$ on H_l is pure, i.e. either discrete, or continuous and purely singular, or equivalent to Lebesgue).

Proof of Proposition 1. Assume α , α' and φ satisfy (1), (2) and (3). From now on, we will denote the Birkhoff sums of φ with respect to $R_{\alpha,\alpha'}$ by

$$\varphi_m(x,y) := \sum_{k=0}^{m-1} \varphi\left(R_{\alpha,\alpha'}^k(x,y)\right).$$

We have

(4)
$$\left| \left(\psi_{k,l} o S_{\alpha,\alpha',\varphi}^m / \psi_{k,l} \right) \right| = \left| \int_{\mathbf{T}^2} e^{i2\pi l \varphi_m(x,y)} dx dy \right|,$$

and we will derive the estimation of Proposition 1 from the large oscillations of $\varphi_m(x,y)$ for all integer m, large enough. We underlined the last quantifier because there lies the difference with the one-dimensional case, the oscillations of φ_m being large in one or in the other direction x and y depending on whether m is far from q_n or far from q'_n . Indeed, a direct computation on the Birkhoff sums of φ_m implies the following, where $\|\cdot\|_{C^3}$ denotes a norm on the space of real functions on \mathbf{R}^2 of class C^3 and \mathbf{Z}^2 -periodic

Lemma For any $m \in [e^{nq_n}, e^{nq'_n}]$, we have

$$\varphi_m(x,y) = \frac{m}{e^{q_n}} \cos(2\pi q_n x) + h^{(m)}(x) + \phi_m(y),$$

where $\phi_m(y)$ denotes the Birkhoff sums of the "y-part" of φ , and where $h^{(m)}$ satisfies, for any m in the above interval, $\|h^{(m)}\|_{C^3} = O(q_n)$.

There is of course an equivalent expression when $m \in [e^{nq'_n}, e^{(n+1)q_{n+1}}]$

in which we interchange x and q_n with y and q'_n respectively.

Proof of the lemma. For any $m \in \mathbb{N}$, we have

$$\varphi_m(x,y) = \operatorname{Re}\left(\sum_{k=1}^{\infty} \frac{X(m,q_k)}{e^{q_k}} e^{i2\pi q_k x} + \sum_{k=1}^{\infty} \frac{Y(m,q'_k)}{e^{q'_k}} e^{i2\pi q'_k y}\right),$$

where

$$X(m, q_k) = \frac{1 - e^{i2\pi m q_k \alpha}}{1 - e^{i2\pi q_k \alpha}}, \qquad Y(m, q'_k) = \frac{1 - e^{i2\pi m q'_k \alpha'}}{1 - e^{i2\pi q'_k \alpha'}}.$$

We will need the following simple inequalities

- (5) For all $k \in \mathbf{N}^*$, and any $m \in \mathbf{N}$, $|X(m, q_k)| \leq m$;
- (6) for k < n, and any $m \in \mathbb{N}$, $|X(m, q_k)| \le q_n$;
- (7) for $m \le e^{nq'_n}$, $|X(m, q_n) m| = o(1)$

Proof of (5), (6) and (7): First,

$$X(m, q_k) = \sum_{i=0}^{m-1} e^{i2\pi j q_k \alpha},$$

so the first inequality is trivial.

For the other inequalities remember that the denominators of the convergents of α satisfy

$$\| q_{n-1}\alpha \| \leq |||k\alpha|||, \quad \forall k < q_n,$$

and

(9)
$$\frac{1}{2q_n} \le \frac{1}{q_{n-1} + q_n} \le |||q_{n-1}\alpha||| < \frac{1}{q_n},$$

where |||.||| denotes the distance to the closest integer.

Next, notice that for any k and for any m

$$|X(m, q_k)| \le \frac{2}{|1 - e^{i2\pi q_k \alpha}|},$$

then using the inequality $\sin(\pi u) \geq 2u$, when $0 \leq u \leq \frac{1}{2}$, we have

$$\frac{2}{|1 - e^{i2\pi q_k \alpha}|} = \frac{1}{\sin \pi |||q_k \alpha|||} \le \frac{1}{2|||q_k \alpha|||},$$

so, if k < n, we have from (8) and the left hand side in (9), that this last term is bounded by q_n . Hence, (6) is proved. For (7), we use again

$$X(m, q_n) = \sum_{j=0}^{m-1} e^{i2\pi j q_n \alpha};$$

since $|||q_n\alpha||| \leq \frac{1}{q_{n+1}} \leq \frac{1}{3e^{nq'_n}}$, one has for $j \leq e^{nq'_n}$

$$e^{i2\pi jq_n\alpha} = 1 + O(e^{-2nq_n'}),$$

which immediately leads to (7).

Coming back to the proof of the lemma, we want to find a bound, when $m \leq e^{nq'_n}$, to the C^2 norm of

$$h^{(m)}(x) = \operatorname{Re}\left(\sum_{k=1}^{\infty} \frac{X(m, q_k)}{e^{q_k}} e^{i2\pi q_k x}\right) - \frac{m}{e^{q_n}} \cos(2\pi q_n x).$$

If we consider the second derivatives of the sum above we have, from (5)

$$\left| \operatorname{Re} \left(\sum_{k=n+1}^{\infty} \frac{X(m, q_k)}{e^{q_k}} (2\pi q_k)^2 e^{i2\pi q_k x} \right) \right| \le m \sum_{k=n+1}^{\infty} \frac{(2\pi q_k)^2}{e^{q_k}},$$

which implies, since $m \leq e^{nq'_n}$, and $q_k \geq e^{3nq'_n}$ for $k \geq n+1$,

$$(10) = o(1).$$

From (6), it follows that

(11)
$$\left| \operatorname{Re} \left(\sum_{k=1}^{n-1} \frac{X(m, q_k)}{e^{q_k}} (2\pi q_k)^2 e^{i2\pi q_k x} \right) \right| = O(q_n).$$

Finally, (7) implies that

$$\left| \frac{X(m, q_n) - m}{e^{q_n}} (2\pi q_n)^2 \right| = o(1),$$

and we obtain the required bound on the second derivative of $h^{(m)}$, which is clearly also valid for $h^{(m)}$ and its first derivative.

Assume now $m \in [e^{nq_n}, e^{nq'_n}]$. In light of the lemma we have just stated, our problem is reduced to majorizing, for $l \in \mathbf{Z}^*$, the absolute value of the integral

$$I_m(l) = \int_{\mathbf{T}} e^{i2\pi l \left[\frac{m}{e^{q_n}}\cos(2\pi q_n x) + h^{(m)}(x)\right]} dx,$$

with the hypothesis $\|h^{(m)}\|_{C^3} \leq q_n$.

Whenever $n \geq \frac{2}{\epsilon}$, one has for $m \in [e^{nq_n}, e^{nq'_n}]$

$$(12) a_m := \frac{m}{e^{q_n}} \ge m^{1 - \frac{\epsilon}{2}}.$$

With a slight abuse of notation we will write $\varphi_m(x)$ for the function $a_m \cos(2\pi q_n x) + h^{(m)}(x)$.

First, we break down the integral to avoid the zeros of $\sin(2\pi q_n x)$:

$$I_m(l) = \sum_{k=0}^{2q_n - 1} \int_{\frac{k}{2q_n}}^{\frac{k+1}{2q_n}} e^{i2\pi l\varphi_m(x)} dx =$$

$$\sum_{k=0}^{2q_n-1} \int_{\frac{k}{2q_n}}^{u_k} e^{i2\pi l \varphi_m(x)} dx + \sum_{k=0}^{2q_n-1} \int_{u_k}^{v_k} e^{i2\pi l \varphi_m(x)} dx + \sum_{k=0}^{2q_n-1} \int_{v_k}^{\frac{k+1}{2q_n}} e^{i2\pi l \varphi_m(x)} dx,$$

where

$$u_k = \frac{k}{2q_n} + \frac{1}{4q_n} \left(\frac{1}{m}\right)^{\frac{1}{3}}, \quad v_k = \frac{k+1}{2q_n} - \frac{1}{4q_n} \left(\frac{1}{m}\right)^{\frac{1}{3}}.$$

We have then

(13)
$$|I_m(l)| \le m^{-\frac{1}{3}} + \sum_{k=0}^{2q_n-1} |I_m^k(l)|$$

where

$$I_m^k(l) := \int_{u_k}^{v_k} e^{i2\pi l\varphi_m(x)} dx, \quad k = 0, ..., 2q_n - 1.$$

Denote

$$\overline{\varphi}_m(x) := \frac{\varphi_m(x)}{a_m} = \cos(2\pi q_n x) + \frac{h^{(m)}(x)}{a_m}.$$

(The function $\overline{\varphi}_m$ is not a Birkhoff sum.)

Notice that, for $x \in [u_k, v_k]$, $2\pi q_n x \in [k\pi + \frac{\pi}{2}m^{-\frac{1}{3}}, (k+1)\pi - \frac{\pi}{2}m^{-\frac{1}{3}}]$, which implies

$$|\sin(2\pi q_n x)| \ge m^{-\frac{1}{3}}.$$

Since $||h^{(m)}||_{C^3} \le q_n \le \log m$, we have for any $m \in [e^{nq_n}, e^{nq'_n}]$: on one hand,

(15)
$$\|\overline{\varphi}_m(x)\|_{C^2} \le 4\pi^2 q_n^2 + q_n \le (\log m)^2,$$

and on the other hand, using (12) and (14) we have that $\overline{\varphi}'_m(x)$ is of constant sign when $x \in [u_k, v_k]$, and

(16)
$$|\overline{\varphi}'_m(x)| \ge 2\pi q_n m^{-\frac{1}{3}} - \frac{\log m}{a_m} \ge m^{-\frac{1}{3}}.$$

Hence, we can make in the expression of $I_m^k(l)$ the change of variable $s = \overline{\varphi}_m(x)$, and obtain

$$|I_m^k(l)| = \left| \int_{\overline{\varphi}_m(u_k)}^{\overline{\varphi}_m(v_k)} \frac{e^{i2\pi l a_m s}}{\overline{\varphi}'_m(\overline{\varphi}_m^{-1}(s))} ds \right|.$$

If now we integrate by parts, having (16) in mind we obtain

$$(17) |I_m^k(l)| \le \frac{m^{\frac{1}{3}}}{\pi l a_m} + \frac{1}{2\pi l a_m} \left| \int_{\overline{\varphi}_m(u_k)}^{\overline{\varphi}_m(v_k)} \frac{\overline{\varphi}_m''}{\left[\overline{\varphi}_m'\right]^3} \left(\overline{\varphi}_m^{-1}(s)\right) e^{i2\pi l a_m s} ds \right|.$$

Going back to the initial variable we have

$$\left| \int_{\overline{\varphi}_{m}(u_{k})}^{\overline{\varphi}_{m}(v_{k})} \frac{\overline{\varphi}_{m}''}{[\overline{\varphi}_{m}']^{3}} (\overline{\varphi}_{m}^{-1}(s)) e^{i2\pi l a_{m} s} ds \right| = \left| \int_{u_{k}}^{v_{k}} \frac{\overline{\varphi}_{m}''(x)}{[\overline{\varphi}_{m}']^{2}(x)} e^{i2\pi l a_{m} \overline{\varphi}_{m}(x)} dx \right|$$

$$\leq \frac{1}{2q_{n}} m^{\frac{2}{3}} \| \overline{\varphi}_{m} \|_{C^{2}}$$

$$\leq \frac{1}{2q_{n}} m^{\frac{2}{3}} [\log m]^{2}.$$

Hence, (17) becomes

$$|I_m^k(l)| \le \frac{m^{\frac{1}{3}}}{\pi l a_m} + \frac{1}{4\pi l a_m q_n} m^{\frac{2}{3}} [\log m]^2.$$

In the right hand side of this inequality, the second term is clearly dominant and (12) implies

$$|I_m^k(l)| \le \frac{1}{lq_n} m^{-\frac{1}{3} + \frac{\epsilon}{2}} [\log m]^2 \le \frac{1}{q_n} m^{-\frac{1}{3} + \epsilon},$$

for any $m \in [e^{nq_n}, e^{nq'_n}]$, n large enough. Coming back to (13), we obtain

$$|I_m(l)| \le m^{-\frac{1}{3}} + 2m^{-\frac{1}{3}+\epsilon} \le 3m^{-\frac{1}{3}+\epsilon}.$$

When $m \in [e^{nq'_n}, e^{(n+1)q_{n+1}}]$, we proceed in the same way integrating along y in (4). Proposition 1 is hence proved.

ACKNOWLEDGMENTS. I wish to thank J-P. Thouvenot for his attention to this note, as well as the referee for useful comments.

REFERENCES

- [1] P. Gabriel, M. Lemańczyk, and P. Liardet. Ensemble d'invariants pour les produits croisés de Anzai. *Mémoire de la Société Mathématique de France. Nouvelle Série*, 47, (1991), p. 102.
- [2] Henry Helson. Cocycles on the circle. J. Operator Theory, 16.
- [3] A. Iwanik, M. Lemańczyk, and D. Rudolph. Absolutely continuous cocycles over irrational rotations. *Israel J. Math.*, **83**, (1993), p. 73–95.
- [4] J-C. Yoccoz. Petits diviseurs en dimension 1. Astérisque (1982), Appendix 1.

Centre de Mathématiques, UMR 7640 du CNRS, École Polytechnique, 91128 Palaiseau Cedex, France fayadb@math.polytechnique.fr